

**Helical End Mill for Titanium Alloy Machining** 

# MECHT






# New Helical End Mill Design Added to the MECH Product Line

Unique Design for Stable Titanium Alloy Milling
Insert combination for increased stability
Special holder design for increased reliability
Excellent chip evacuation

Longer Tool Life with Low-resistance JS Chipbreaker and Tough PVD Coating Technology





# **MECHT**

Insert Size Combination Improves Roughing Capabilities Maintains Stable Machining and Long Tool Life

1

# **Developed to Reduce Chattering and Chip Recutting Issues**

# **Unique Insert Combination**

The larger bottom inserts are positioned to handle larger cutting forces (excluding ø32)

Stable machining with improved fracture resistance

# **New Design for Higher Reliability**

Bottom inserts are held in place by double-faced contacts



**Holding Surface 1** 

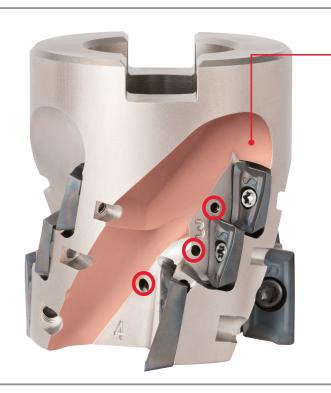
Wide Holding Surface



**Holding Surface 2** 

Additional Hold in the Axial Direction

### Bore Dia.


Larger bore diameter improves fastening power and reduces chattering  $\emptyset$  50mm Cutter with a  $\emptyset$  27mm Bore (Conventional Bore :  $\emptyset$  22mm)

Toolholder Hardness Hardened 15% more than conventional holders

Toolholder Spec

Custom ordering available

(Custom number of inserts and stages)



# **Excellent Chip Evacuation**

### New flute design

Large, smooth flutes prevent chip clogging

MECHT (ø50-4T 3 Stages)

Conventional (ø50-4T 4 Stages)

### Large flute





Smooth design

### All inserts have coolant holes

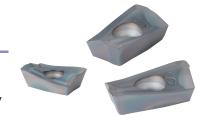
Optimized hole diameter controls flow amount and pressure

Smooth chip evacuation as well as superior cooling of the cutting edge



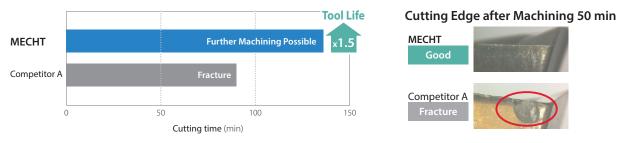
Chips Example

# Longer Tool Life with Low-resistance JS Chipbreaker and Tough PVD Coating


**Low Cutting Force** 

JS Chipbreaker

Heat at the cutting edge is suppressed due to sharp cutting performance Long tool life **Greater Toughness** 


PR1535

Fracture resistant with a tough substrate and high heat-resistant MEGACOAT NANO coating technology



Tool Life Comparison (Internal Evaluation)

# MECHT showed good cutting edge condition, and tool life was 50% longer than competitor B.

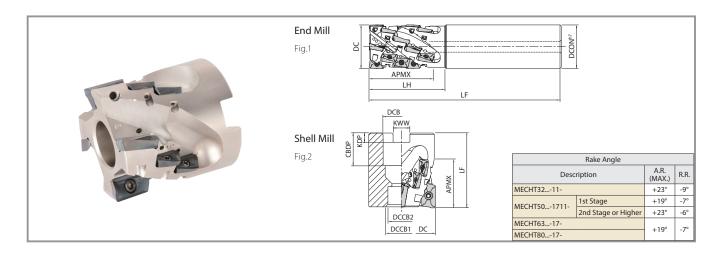


 $Cutting\ Conditions: Vc = 40\ m/min,\ ap \times ae = 43 \times 20\ mm,\ fz = 0.12\ mm/t,\ \phi 50\ (5\ Flutes),\ Wet\ (External\ and\ internal\ coolant).\ Workpiece: Ti-6Al-4V.\ Machine: BT50$ 

Slotting Titanium Alloy (Internal Evaluation)

ap = 20mm (0.4xDC)

# Stable Machining without Chip Clogging or Chattering




 $Cutting\ Conditions: Vc = 40\ m/min, ap \times ae = 20 \times 50\ mm\ (Slotting), fz = 0.08\ mm/t \\ \varnothing 50\ (5\ Flutes), Wet\ (External\ and\ internal\ coolant)\ Workpiece: Ti-6Al-4V\ Machine: BT50$ 

# **Case Study** Aerospace Part Ti-6Al-4V $Vc = 55 \text{ m/min (n} = 350 \text{ min}^{-1})$ $ap \times ae = 24 \times 16 \text{ mm}$ $\dot{fz} = 0.09 \text{ mm/t (Vf} = 126 \text{ mm/min)}$ Wet (Internal coolant) MECHT50R-1711-3-4T-M BDMT170408ER-JS PR1535 (first stage) BDMT11T308ER-JS PR1535 (second and third stage) Cutting **Efficiency Cutting Efficiency** Vf = 126 mm/min **MECHT** Vf = 84 mm/minCompetitor B MECHT showed good chip evacuation and stable machining even with increasing feed rate. Machining efficiency was 50% better that of the competitor with equivalent tool life. (User evaluation)

# **Recommended Cutting Conditions**

|                |              | Donth of              | Cut (mm) |                           | Recommended Insert Grade (Vc : m/min) |  |  |  |
|----------------|--------------|-----------------------|----------|---------------------------|---------------------------------------|--|--|--|
| Workpiece      | Applications | Depth of              | Cut (mm) | fz (mm/t)                 | MEGACOAT NANO                         |  |  |  |
|                |              | ар                    | ae       |                           | PR1535                                |  |  |  |
| Titanium Alloy | Shouldering  | ~Length of Cut (APMX) | ~0.5DC   | 0.10 ~ <b>0.12</b> ~ 0.16 | 30 ~ <b>40</b> ~ 60                   |  |  |  |
| (Ti-6Al-4V)    | Slotting     | ~0.5DC                | 1DC      | 0.05 ~ <b>0.07</b> ~ 0.09 | 30 ~ <b>40</b> ~ 50                   |  |  |  |



# **Toolholder Dimensions**

# **End Mill**

|                      |       | tes    | es       | ts      |    |      |        | , ,  |      |       | Spare          | Parts  | Applicable Inserts |                 |  |
|----------------------|-------|--------|----------|---------|----|------|--------|------|------|-------|----------------|--------|--------------------|-----------------|--|
| Description          | Stock | 문      | · Stages | Inserts |    | Dime | nsions | (mm) |      | Shape | Clamp<br>Screw | Wrench |                    | 2nd Stage or    |  |
|                      | St    | No. of | No. of   | No. of  | DC | DCON | LF     | LH   | APMX |       |                |        | 1st Stage          | Higher          |  |
| MECHT 32-S32-11-5-4T | •     | 4      | 5        | 20      | 32 | 32   | 140    | 55   | 46   | Fig.1 | SB-2555TRG     | DTM-8  | BDMT11T3**         | *1 BDMT11T308** |  |

# Shell Mill

|             |                 | ts es              |        |        |         |    |                 |                   |                   |    |      | S   | pare Par | is   | Applicable Inserts |                |                   |         |               |                        |  |
|-------------|-----------------|--------------------|--------|--------|---------|----|-----------------|-------------------|-------------------|----|------|-----|----------|------|--------------------|----------------|-------------------|---------|---------------|------------------------|--|
| Description |                 | Stock<br>of Flutes |        | St     | Inserts |    | Dimensions (mm) |                   |                   |    |      |     |          |      | ape                | Clamp<br>Screw | Wrench Arbor Bolt |         |               | and Stage or           |  |
|             |                 | St                 | No. of | No. of | No. of  | DC | DCB             | DCCB <sub>1</sub> | DCCB <sub>2</sub> | LF | CBDP | KDP | KWW      | APMX | Sh                 |                |                   |         | 1st Stage     | 2nd Stage or<br>Higher |  |
| MECHT       | 50R-1711-3-4T-M | •                  | 4      | 3      | 12      | 50 | 27              | 20                | 14                | 55 | - 24 | 7   | 12.4     | 34   |                    | SB-2555TRG     | DTM-8             | HH12X40 |               | *1 BDMT11T308**        |  |
|             | 50R-1711-4-5T-M | •                  | 5      | 4      | 20      | 30 | 21              | 20                | 14                | 65 | 24   | ′   | 12.4     | 43   |                    | SB-4070TRN     | DTM-15            | HH12X50 | BDMT1704**    |                        |  |
| MECHT       | 63R-17-4-5T-M   | •                  | 5      | 4      | 20      | 63 | 27              | 20                | 14                | 80 | 24   | 7   | 12.4     | 60   | Fig.2              | SB-4070TRN     |                   | HH12X65 | סטואוו 1704** | *1 DD14T4 70 400**     |  |
|             | 80R-17-4-6T-M   | •                  | 6      | 4      | 24      | 80 | 32              | 26                | 17                | 00 | 28   | 8   | 14.4     | 00   |                    | 3D-4U/UIKIN    | כו-ואוטן          | HH16X65 |               | *1 BDMT170408**        |  |

<sup>\*1.</sup> Use inserts with Corner R of 0.8 or less for the 2nd or higher stages

# : Standard Stock

# **Applicable Inserts**

| Sha               | ape      | Description |             |     | Dime | nsions | (mm) |     | An  | gle | MEGACOAT NANO |
|-------------------|----------|-------------|-------------|-----|------|--------|------|-----|-----|-----|---------------|
| Handed Insert sh  | •        |             | Description | W1  | S    | D1     | L    | RE  | AS  | AN  | PR1535        |
|                   | <b>A</b> | BDMT        | 11T302ER-JS |     |      |        |      | 0.2 |     |     | •             |
|                   |          |             | 11T304ER-JS | 6.7 | 3.8  | 2.8    | 11.0 | 0.4 | 18° | 13° | •             |
|                   | (10°) AS |             | 11T308ER-JS |     |      |        |      | 0.8 |     |     | •             |
|                   |          | BDMT        | 170404ER-JS | 0.6 | 4.9  | 4.4    | 17.0 | 0.4 | 18° | 13° | •             |
| Low Cutting Force | AN       |             | 170408ER-JS | 9.6 | 4.9  | 4.4    | 17.0 | 0.8 | 18  | 13  | •             |

 ${\it General JT chipbreaker and notched insert (only if holder has an even number of inserts) can also be used.}$ For more information, please contact your Kyocera sales representative. \\

●: Standard Stock

Machining with coolant is recommended (Internal coolant pressure 1.5 MPa or higher)

Coat anti-seize compound (P-37) thinly on the taper and the thread of the clamp screw when mounting inserts.