

High Feed and Large Depth of Cut Milling

MFH Boost

High Feed Milling with Larger Depths of Cut

High Feed End Mills with Cutting Dia. Available from ø22 and up to 2.5mm Depth of Cut

Excellent Performance in a Wide Range of Applications, including Automotive Parts, Difficult-to-cut Materials, and Molds Provides Multiple Solutions for Various Machining Environments

Large Lineup of End Mills, Face Mills, and Modular Types Available

MFH Boost

The Newest Addition to the MFH Series - High Feed plus Large D.O.C. for Greater Milling Capabilities Excellent Performance in a Wide Range of Applications, including Automotive Parts, Difficult-to-cut Materials, and Molds

1

High Feed Milling with Large Depth of Cut Capabilities

Video

A small 04 size insert (4-edge, Double-sided insert) supports depths of cut up to 2.5mm with cutting dia. available from ø22mm.

Achieves high efficiency machining in various shouldering, slotting, helical milling, and ramping applications.

New Value with 2.5mm Max. Depth of Cut

1 Provides a Better Alternative to Conventional **90°End Mills** (Roughing to Medium-Finishing)

Automotive Parts

General Steel Machining

- Increased productivity with large D.O.C. machining
- High reliability in unstable machining environments
 Long overhang length and better clamping rigidity
 Stable machining with low rigidity machines
- High-efficiency ramping

 Large ramping angle (Small dia. Ø25mm: 3°)

 Dramatic efficiency improvement when ramping in pockets
- Longer tool life with high-efficiency machining

2 Provides a Greater Solution to Conventional High Feed Cutters

General Parts/Mold (High Roughing/Facing)

General Parts, Pressing and Die Casting

- Higher productivity with large D.O.C.
- Long tool life and improved efficiency through the reduction of tool paths

Reduced machining time when machining workpieces with large variations in machining margins

■ Longer tool life with high-efficiency machining

*MFH Mini/Harrier recommended for contouring with small depth of cut and high feed

3 Solutions for Machining Difficult-to-cut Materials

Aircraft/Energy Industry Parts

Difficult-to-cut materials such as titanium alloy and stainless steel machining

- High feed rates increase productivity
- Long tool life through the reduction of tool paths
- Good combination with heat-resistant grade PR1535 provides long tool life and stable machining

Improving Productivity and Reducing Machining Costs

2 Available for a Variety of Machining Applications and Environments

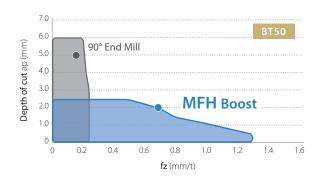
1 Solutions for 90° End Mills (Rough to Medium-Finish Machining)

High Feed Rates Dramatically Improve Machining Efficiency

Machining Efficiency Simulation Example

Pocketing: Vc = 150 m/min, ae = 12.5 mmMachining Efficiency

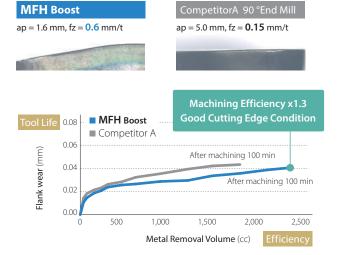
MFH Boost


Ø 25 (3 Inserts)

ap = 2.0 mm, fz = 0.7 mm/t

Conventional 90 ° End Mill

Ø 25 (3 Inserts)


ap = 5.0 mm, fz = 0.15 mm/t

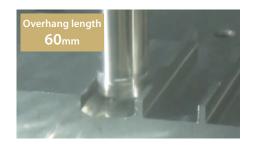
High Efficiency and Good Tool Life

Machining Efficiency and Cutting Edge Condition Comparison

Cutting edge condition after 100 min machining

 $Vc = 150 \text{ m/min, ae} = 12.5 \text{ mm, Dry SCM440} \otimes 25 (1 \text{ Insert) BT50}$

High Stability in Unstable Machining Environment


Chatter Resistance Comparison (Internal evaluation)

Slotting ø 25 (3 Inserts)

External air S50C BT50

Video

Machining Efficiency

MFH Boost 103 cc/min

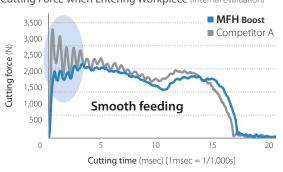
Machining Efficiency

Competitor A

31 cc/min Chattering (Machining was impossible)
Vc = 80 m/min, ap = 2 mm, fz = 0.2 mm/t

Vc = 80 m/min, ap = 2 mm, fz = 0.15 mm/t

Vc = 120 m/min, ap = 1.5 mm, fz = **0.6** mm/t


High Efficiency and Stable Machining Designs

Kyocera's original technology

Convex cutting edge design reduces impact when entering workpiece

Cutting Force when Entering Workpiece (Internal evaluation)

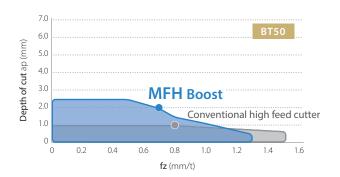
 $Vc = 150 \text{ m/min, ap} = 2.0 \text{ mm,} \\ ae = 25 \text{ mm, fz} = 0.7 \text{ mm/t,} \\ Dry \ S50C \ \emptyset \ 50 \ (1 \text{ Insert)} \ BT50$

2 Better Solution to Conventional High Feed Cutters

Large D.O.C. Dramatically Improves Machining Efficiency

Machining Efficiency Simulation Example

Multistage Machining (Depth 30 mm): Vc = 150 m/min, ae = 12.5 mm


Machining Efficiency

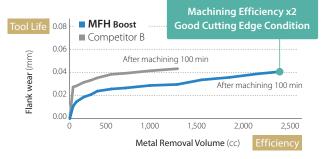
MFH Boost ω 25 (3 Inserts)

ap = 2.0 mm, fz = 0.7 mm/t

Conventional high feed cutter ω 25 (3 Inserts)

ap = 1.0 mm, fz = 0.8 mm/t

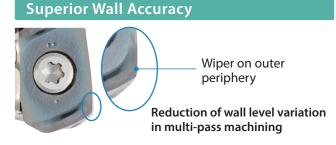
Video


Video

High Efficiency and Good Tool Life

Machining Efficiency and Cutting Edge Condition Comparison (Internal evaluation)

Cutting edge condition after 100 min machining


Vc = 150 m/min, ae = 12.5 mm, Dry SCM440 ø 25 (1 Insert) BT50

Excellent Wall Accuracy Machining Efficiency and Wall Accuracy Comparison (Internal Evaluation) Pocketing (Depth 12mm) MFH Boost Ø 25 (3 Inserts) Competitor B High Feed Type Ø 25 (4 Inserts) Step 17µm ap = 1.5 mm × 8 Passes ap = 0.8 mm × 15 Passes

O = 81 cc/min

Cutting Conditions: Vc = 200 m/min, ae = 12.5 mm, fz = 0.8 mm/t, Dry S50C BT50

 $\dot{O} = 115$ cc/min

3 Solutions for Machining Difficult-to-cut Materials

Dramatic improvement in machining efficiency with titanium alloy, stainless steel machining, etc.

Machining Efficiency Comparison (Internal evaluation)

Titanium Alloy Pocketing (Depth 6 mm)

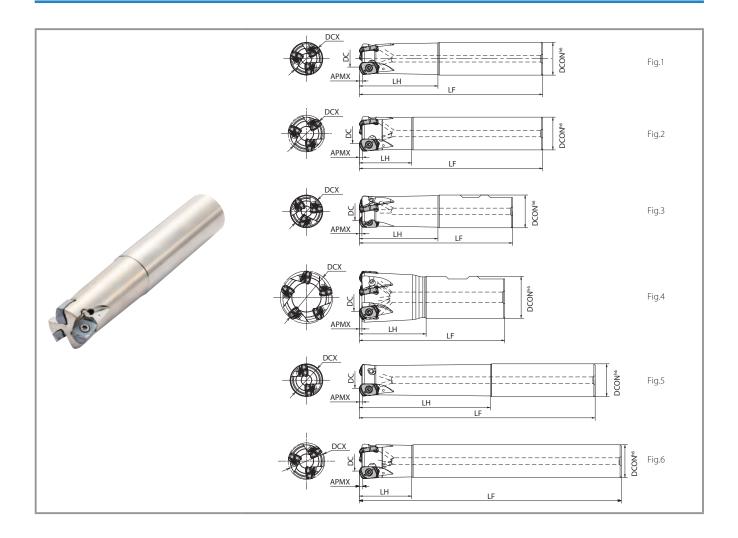
Machining

MFH Boost

Competitor C

High Feed Type

Approx. 1' 30"

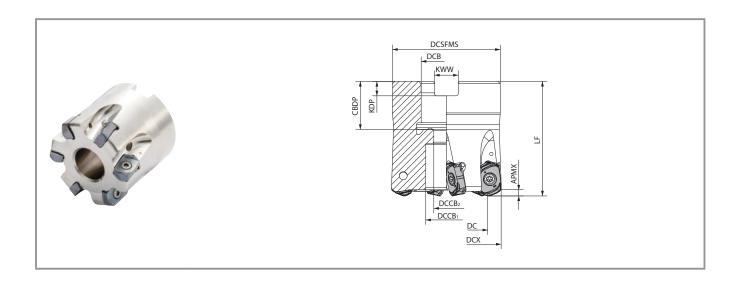

ap = **1.5** mm × **4** Passes (fz = \sim 0.35 mm/t)

Approx. 2' 50"

ap = 0.6 mm × 10 Passes (fz = ~0.4 mm/t)

Vc = 50 m/min, ae = 12.5 mm(ae/DCX = 50%), Ramping angle 3° Ti-6Al-4V Wet &25 (3 inserts) BT50

Toolholder Dimensions


							Dimensio	ns (mm)			Rake Angle				
Shank		Description	Stock	No. of Inserts	DCX	DC	DCON	LH	LF	APMX	A.R.	Coolant Hole	Shape	Weight (kg)	Max.Revolution (min ⁻¹)
	MFH	25-S25-04-2T	•	2	25	14	25	60	140					0.5	12,700
Standard		25-S25-04-3T	•	3	25	14	25	60	140	2.5	-10°	Yes	Fig 1	0.5	12,700
(Straight)		32-S32-04-4T	•	4	32	21	32	70	150	2.5	-10	res	Fig.1	0.8	11,200
		32-S32-04-5T	•	5	32	21	32	70	150					0.8	11,200
	MFH	22-S20-04-2T	•	2	22	11	20	30	130					0.3	13,600
		28-S25-04-3T	•	3	28	17	25	40	140					0.5	12,000
		28-S25-04-4T	•	4	20	17	25	40	140					0.5	12,000
Over Size (Straight)		35-S32-04-4T	•		35	24				2.5	-10°	Yes	Fig.2	0.8	10,700
(Straight)		35-S32-04-5T	•	5	35	24	32	50	150					0.8	10,700
		40-S32-04-5T	•	5	40	29	32	50	150					0.9	10,000
		40-S32-04-6T	•	6	40	29								0.9	10,000
	MFH	25-W25-04-2T	•	2	25	14	25		117					0.4	12,700
		25-W25-04-3T	•	3	25	14	25	60	117				Fig 2	0.4	12,700
Standard		32-W32-04-4T	•	4	32	21		70	131	2.5	-10°	Yes	Fig.3	0.7	11,200
(Weldon)		32-W32-04-5T	•	5	32	21	32	/0	131	2.5	-10	res		0.7	11,200
		40-W32-04-5T	•) 5	40	29	32	50	111				Fig. 4	0.7	10.000
		40-W32-04-6T	•	6	40	29		50	'''				Fig.4	0.7	10,000
	MFH	25-S25-04-2T-180	•	2	25	14		100	180				Fin F	0.6	12,700
		25-S25-04-3T-180	•	3	25	14	25	100	180				Fig.5	0.6	12,700
Long Shank		28-S25-04-3T-200	•	3	28	17		40		2.5	-10°	Yes	Fig.6	0.7	12,000
(Straight)		32-S32-04-4T-200	•	4	32	21		120	200	2.5	-10	res	Fig.5	1.1	11,200
		35-S32-04-4T-200	•	4	35	24	32	FO					Fig 6	1.1	10,700
		40-S32-04-5T-250	•	5				50	250				Fig.6	1.5	10,000

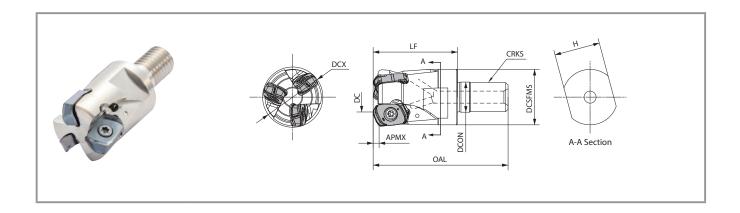
●: Standard Stock

Caution with Max. Revolution

Set the number of revolutions per minute within the recommended cutting speed specified by the workpiece on back cover.

Do not use the end mill or cutter at the maximum revolution or higher since the centrifugal force may cause chips and parts to scatter even under no load.

Toolholder Dimensions


									Dime	ensions (mm)					Rake Angle			
Bore Dia.		Description	Stock	No. of Inserts	DCX	DC	DCSFMS	DCB	DCCB ₁	DCCB ₂	LF	CBDP	KDP	KWW	APMX	A.R.	Coolant Hole	(kg)	Max.Revolution (min ⁻¹)
In als Co. a		080R-04-8T	•	8	80	69	76	21.75	26	17	63	32	8.0	12.7	2.5	-10°	Yes	1.6	7.100
Inch Spec		080R-04-10T	•	10	80	69	76	31.75	20	17	03	32	0.0	12.7	2.3	-10	ies	1.6	7,100
	MFH	040R-04-5T-M	•	5	40	29	38	16	15	9	40	19	5.6	8.4				0.2	10,000
		040R-04-6T-M	•	6	40	29	30	10	15	9	40	19	5.0	0.4				0.2	10,000
		050R-04-6T-M	•	0	50	39												0.4	9,000
		050R-04-7T-M	•	7	30	39	47											0.4	5,000
		052R-04-6T-M	•	6	52	41		22	22 18	11		21	6.3	10.4				0.5	8,800
Metric		052R-04-7T-M	•	7	52	41		22		0 11	50	21	0.5	10.4	2.5	-10°	Yes	0.4	8,800
Spec		063R-04-7T-M	•	,													ies	0.8	
		063R-04-9T-M	•	9	63	52	60											0.8	
		063R-04-7T-27M	•	7	63	52	60											0.8	8,000
		063R-04-9T-27M	•	9				27	20	12		24	7.0	12.4				0.7	
		080R-04-8T-M	•	8	80	60	-	27	20	13	62	24	7.0	12.4				1.8	7 100
		080R-04-10T-M	•	10	δυ	69	76			63	63							1.7	7,100

: Standard Stock

Caution with Max. Revolution
Set the number of revolutions per minute within the recommended cutting speed specified by the workpiece on back cover.
Do not use the end mill or cutter at the maximum revolution or higher since the centrifugal force may cause chips and parts to scatter even under no load.

Parts

		Parts	
	Clamp Screw	Wrench	Anti-seize Compound
Description			
MFH04	SB-3575TRP	DTPM-10	P-37
1011 110-4	Recom	mended Torque for Insert Clamp 2	.0N·m

Toolholder Dimensions

								imensions	(mm)				Rake Angle		
	Description	Stock	No. of Inserts	DCX	DC	DCSFMS	DCON	OAL	LF	CRKS	Н	APMX	A.R.	Coolant Hole	Max.Revolution (min ⁻¹)
MF	H 22-M10-04-2T	•		22	11	18.7	10.5	48	30	M10XP1.5	15				13,600
	25-M12-04-2T	•	2	25	14										12,700
	25-M12-04-3T	•	3	25	14	23	12.5	56	35	M12XP1.75	19				12,700
	28-M12-04-3T	•	3	28	17	23	12.3	30	33	WITZAFT.73	19				12,000
	28-M12-04-4T	•	4	20	17										12,000
	32-M16-04-4T	•	4	32	21										11,200
	32-M16-04-5T	•	5	32	21							2.5	-10°	Yes	11,200
	35-M16-04-4T	•	4	35	24										10,700
	35-M16-04-5T	•	- 5	33	24	30	17	62	40	M16XP2.0	24				10,700
	40-M16-04-5T	•	3	40	29	30	17	02	40	IVITOAP2.U	24				10,000
	40-M16-04-6T	•	6	40	29										10,000
	42-M16-04-5T	•	5	12	42 31										9,800
	42-M16-04-6T	•	6	72											9,600

: Standard Stock

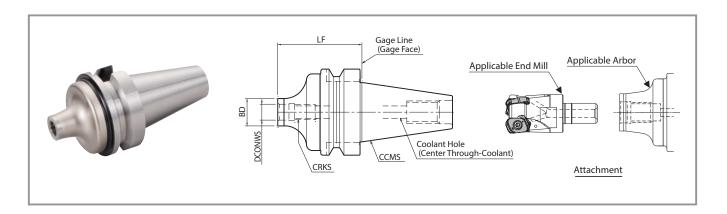
Set the number of revolutions per minute within the recommended cutting speed specified by the workpiece on back cover.

Do not use the end mill or cutter at the maximum revolution or higher since the centrifugal force may cause chips and parts to scatter even under no load.

Applicable Inserts

Shape	Description		Dime	ensions	(mm)		ME	CVD Coating		
		W1	S	D1	INSL	RE	PR1535	PR1525	PR1510	CA6535
4-edge, Double-sided insert	LOMU 040410ER-GM	9.1	4.4	4.1	14.5	1.0	•	•	•	•

•: Standard Stock

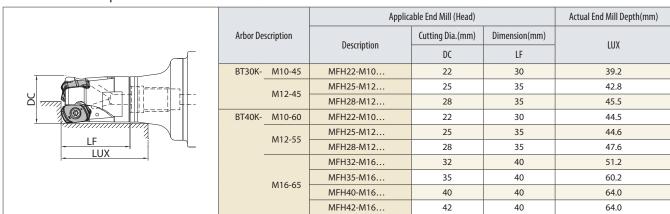

Insert Grade:

PR1535 For Steel Machining (Stable machining oriented), Titanium alloy, Austenitic/Precipitation hardening stainless steel, etc.

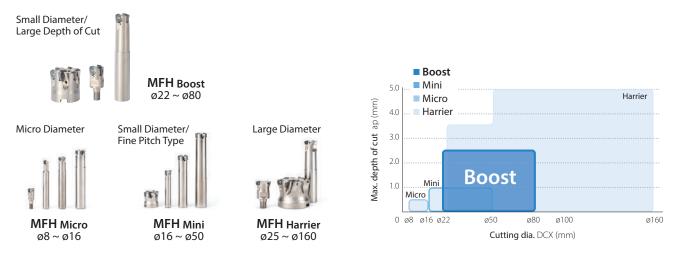
PR1525 For Steel Machining (General use)

PR1510 For Cast Iron Machining

CA6535 For Martensitic stainless steel, Ni-base heat resistant alloy, etc.



Dimension


Description	Description Stock			mensions (mm)		Coolant Hole	Arbor (Two-face clamping)	Applicable End Mill (Head)
Description	Stock	LF	BD	DCONWS	CRKS	Cooluit Hole	CCMS	Applicable End Mill (redd)
BT30K- M10-45	•	45	18.7	10.5	M10×P1.5	Yes	BT30	MFHM10
M12-45	•	45	23	12.5	M12×P1.75	ies	D130	MFHM12
BT40K- M10-60	•	60	18.7	10.5	M10×P1.5			MFHM10
M12-55	•	55	23	12.5	M12×P1.75	Yes	BT40	MFHM12
M16-65	•	65	30	17	M16×P2.0			MFHM16

: Standard Stock

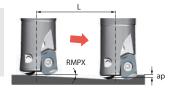
Actual End Mill Depth

MFH Series Large Lineup for Various Applications and Machining Environments

			Toolholder Description	n and Feed (fz: mm/t)		Recommended Inse	rt Grade (Vc: m/min)		
Chipbreaker	Wo	orkpiece		MEII 04		MEGACOAT NANO		CVD Coating	
			ap(mm)	MFH04	PR1535	PR1525	PR1510	CA6535	
			≤ 0.5	0.20 - 0.80 - 1.30					
			≤ 1.0	0.20 - 0.70 - 1.10] .				
		(~ 280HB)	≤ 1.5	0.20 - 0.60 - 0.80	☆ 120 – 160 – 220	120 - 160 - 220	_	_	
	Carbon Steel		≤ 2.0	0.20 - 0.40 - 0.70	120 - 100 - 220	120 - 100 - 220			
	(SxxC)		≤ 2.5	0.20 - 0.30 - 0.50					
	Alloy Steel		≤ 0.5	0.20 - 0.75 - 1.20					
	(SCM, etc.)		≤ 1.0	0.20 - 0.65 - 1.00	☆	*			
		(~ 350HB)	≤ 1.5	0.20 - 0.55 - 0.70	100 – 150 – 200	100 – 150 – 200	_	_	
		(330.15)	≤ 2.0	0.20 - 0.40 - 0.55	(Dry Machining Recommended)	(Dry Machining Recommended)			
			≤ 2.5	0.20 - 0.25 - 0.35	(Recommended)	Recommended)			
			≤ 0.5	0.20 - 0.60 - 1.10					
			≤ 1.0	0.20 - 0.50 - 0.90	☆	*			
		(~ 40HRC)	≤ 1.5	0.20 - 0.40 - 0.65	80 - 120 - 160	80 – 120 – 160 (Dry Machining			
		(~ 40HNC)	≤ 1.3 ≤ 2.0	0.20 - 0.30 - 0.55	(Dry Machining		_	_	
					Recommended)	Recommended)			
			≤ 2.5	0.20 - 0.25 - 0.35					
			≤ 0.5	0.10 - 0.30 - 0.50		*			
	Mold Steel	/	≤ 1.0	0.10 - 0.25 - 0.40		60 – 100 – 130			
	(SKD, etc.)	(40 ~ 50HRC)	≤ 1.5	0.10 - 0.20 - 0.30	_	(Dry Machining	_	_	
	. , ,		≤ 2.0	_		Recommended)			
			≤ 2.5						
			≤ 0.5	0.10 - 0.20 - 0.40					
			≤ 1.0	0.10 - 0.15 - 0.25		★ 50 – 70 – 100			
		(50 ~ 55HRC)	≤ 1.5		_	(Dry Machining	_	_	
			≤ 2.0	-		Recommended)			
			≤ 2.5						
			≤ 0.5	0.20 - 0.60 - 1.00					
		Austenitic Stainless Steel		0.20 - 0.50 - 0.90					
				0.20 - 0.45 - 0.60	★ 100 – 140 – 180	100 − 140 − 180	_	_	
	(SUS304, etc.)		≤ 1.5 ≤ 2.0	0.20 - 0.30 - 0.50	100 - 140 - 160	100 - 140 - 160			
			≤ 2.5	0.20 - 0.25 - 0.40					
GM			≤ 0.5	0.20 - 0.60 - 1.00					
			≤ 1.0	0.20 - 0.50 - 0.90					
	Martensitic Sta	inless Steel	≤ 1.5	0.20 - 0.45 - 0.60	_☆_	_	-	*	
	(SUS403, etc.)		≤ 2.0	0.20 - 0.30 - 0.50	100 – 150 – 200			150 – 200 – 300	
			≤ 2.5	0.20 - 0.25 - 0.40					
			≤ 0.5	0.10 - 0.30 - 0.50					
				0.10 - 0.25 - 0.45					
	Precipitation Har	dened Stainless Steel	≤ 1.0		*				
	(SUS630, etc.)		≤ 1.5	0.10 - 0.15 - 0.25	90 – 120 – 150	_	_	_	
			≤ 2.0	-					
			≤ 2.5						
			≤ 0.5	0.20 - 0.80 - 1.30					
	Gray Cast Iron		≤ 1.0	0.20 - 0.70 - 1.10			•		
	(FC)		≤ 1.5	0.20 - 0.60 - 0.80	_	_	120 - 160 - 220	_	
	. =/		≤ 2.0	0.20 - 0.40 - 0.70					
			≤ 2.5	0.20 - 0.30 - 0.50					
			≤ 0.5	0.20 - 0.60 - 1.00					
	Na dula : Carat I		≤ 1.0	0.20 - 0.50 - 0.90			_		
	Nodular Cast Ir	on	≤ 1.5	0.20 - 0.40 - 0.70	_	_	100 - 150 - 200	_	
	(FCD)		≤ 2.0	0.20 - 0.30 - 0.60	1		130 130 - 200		
			≤ 2.5	0.20 - 0.25 - 0.40	1				
			≤ 0.5	0.10 - 0.30 - 0.45					
			≤ 1.0	0.10 - 0.25 - 0.40					
	Ni-base Heat-R	esistant Allov	≤ 1.5	0.10 - 0.15 - 0.20	☆ 20 – 30 – 50	_	_	★ 20 – 30 – 50	
	IN DUSC FICAL-IN	esistant Alloy	≤ 2.0	5.10 0.15 - 0.20	20 – 30 – 50			20 – 30 – 50	
				-					
			≤ 2.5	010 030 055					
			≤ 0.5	0.10 - 0.30 - 0.50	-				
	Titanium Alloy		≤ 1.0	0.10 - 0.25 - 0.45	*				
			≤ 1.5	0.10 - 0.15 - 0.25	40 – 60 – 80	_	_	_	
	(Ti-6Al-4V)	łV)	≤ 2.0		40 - 60 - 80				
			-						

[•] The number in **bold font** is recommended starting conditions. Adjust the cutting speed and the feed rate within the above conditions according to the actual machining situation.

Ine number in **Dold Toht** is recommended starting conditions. Adjust the cutting speed and the feed rate within the above conditions according.
 Machining with coolant is recommended for Precipitation Hardened Stainless Steel,Ni-base Heat-Resistant Alloy and Titanium Alloy.
 Wet machining may have a lower tool life than dry machining. Set the cutting speed, feed rate and D.O.C. lower than recommended conditions.
 Machining with BT30 or equivalent, feed rate should be reduced to 25% of recommended cutting conditions. Slotting is not recommended.
 Center through air is recommended for slotting.
 Slotting or pocketing are not recommended for face mill type.
 For face milling, it is recommended that width of cut should be set to 75% or less of the cutting diameter.
 It is recommended to set the long shank to 75% or less of the recommended conditions for both ap and feed.


■ Approximate Programming Radius Adjustment

Shape	Programmable R (mm)	Over Machined Radius Portion (mm)	Non-machined Portion (mm)
	1.5	0	1.42
Workpiece Side Wall Max. Inclination Angle	2.0	0	1.24
Non-machined Radius Portion	3.0 (Recommended)	0	0.87
	3.5	0.06	0.69

Ramping Tips

- Ramping angle should be under RMPX
- Reduce recommended feed rate in cutting conditions above by 70%

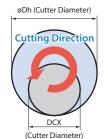
Formula for Max. Cutting Length (L) at Max. Ramping Angle $L = \frac{ap}{tan\,RMPX}$

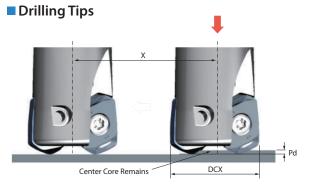
 When ramping from both the front and outer periphery, set the maximum ramping angle RMPX to 50%.

■ Ramping Reference Table

Description	Cutter Dia. DCX (mm)	22	25	28	32	35	40	42	50	52	63	80
MFH04	Max. Ramping Angle RMPX	3.9°	3.0°	2.4°	2.0°	1.7°	1.4°	1.3°	1.0°	1.0°	0.8°	0.6°
WIFП04	tan RMPX	0.068	0.052	0.042	0.035	0.029	0.024	0.022	0.018	0.017	0.013	0.010

■ Helical Milling Tips


• For helical milling, use between min. cutting dia. and max. cutting dia.


Center Core Hits Holder Body

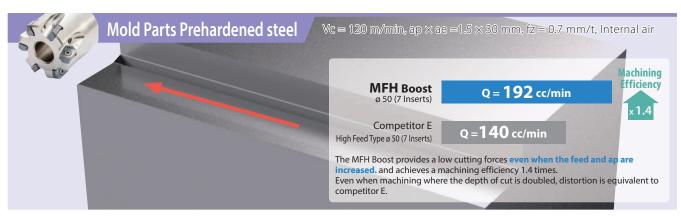
Description	Min. Cutting Dia. (mm)	Max. Cutting Dia. (mm)
MFH04	2×DCX-11	2×DCX-2

- Maximum ramping depth per cycle to be under maximum D.O.C. ap (2.5 mm)
- Use climb milling. (Refer to the above figure)
- $\, \cdot \, \text{Feed}$ rates should be reduced to 50% of recommended cutting conditions
- $\boldsymbol{\cdot}$ Use caution to eliminate incidences caused by producing long chips

	GM Type							
Description	Max. Drilling Depth Pd (mm)	Min. Cutting Length X for Flat Bottom Surface (mm)						
MFH04	0.6	DCX-12						

- \cdot It is recommended to reduce feed by 25% of recommendation until the center core is removed
- Axial feed rate recommendation per revolution is $f \le 0.2$ mm/rev

Plunging


Insert Description	Maximum Width of Cut (ae)
LOMU04 Type	5.0mm

[•] Reduce feed rate to fz \leq 0.2mm/t when plunging

Fast, Strong, and Efficient

(User Evaluation)